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Abstract 

 

In this project, we aim to develop a model that 

learns to compose music for natural language. The 

model is provided with poetry lyrics as input and 

generates a suitable melody for these lyrics as output. 

The model consists of two LSTM layers followed by a 

dense layer with a SoftMax activation function. The 

model was trained on a pair of lyrics-melody of 532 

songs which depicts mixed emotions. The dataset 

comprises of sad and happy songs. The results of the 

experiment show that the LSTM model was 

successfully able to generate a melody which captures 

the sentiment of the lyrics. 

 

1. Introduction 

 

For the experiments in this study, we chose a dataset 

which comprises of multiple sentiments. The model 

takes song lyrics as input and generates a melody for it 

as a result. The main aim is that the model should learn 

to capture the sentiments of the text and generate a 

melody for it. We chose ABC music notation for music 

as it is easy to understand compared to the other music 

notations. In ABC notation, the music is just a 

sequence of characters. We feed these characters in 

sequence to our model at each time step along with the 

words from the lyrics. Since our output is a multiclass 

classification problem, so we use cross entropy as our 

loss function.  The model not only learns the patterns 

of the musical notes from our training data but also 

learns the emotion in the lyrics.    

We collected 532 lyrics-melody pairs to carry out our 

experiment. Though these songs capture multiple 

sentiments, due to the lack of knowledge of music we 

broadly classify the testing lyrics into sad and happy 

moods and carried out human evaluation based on it. 

The human evaluation results further show that the 

generated tones were able to convey the sentiments of 

the song.  Though the generated melody was not 

pleasing, it was still able to capture the emotions which 

was the aim of our experiment. 

  

Novelty: The factor of novelty in this project is the 

emotion analyzing part where the model learns to 

generate music according to the sentiment of the input 

lyrics. Much research has been carried out to generate 

novel music. But, to the best of our knowledge, 

generating music for the input lyrics is an ongoing 

research area and no solution has yet been established 

to solve this problem. 

1.1. Concepts from music theory 

Melody can be regarded as an ordered sequence of 

many musical notes. The basic unit of melody is the 

musical note which mainly consists of two attributes: 

pitch and duration. The pitch is a perceptual property 

of sounds that allows their ordering on a frequency-

related scale; or in simple words, the pitch is the quality 

that makes it possible to judge sounds as “higher” and 

“lower” in the sense associated with musical melodies . 

Duration is a time interval to describe the length of time 

that the pitch or tone sounds, which is to judge how 

long or short a musical note lasts.  

An ABC file1 (shown in figure 1) in music consists of 

a tune header and tune body, terminated by the end of 

file tag. The tune header consists of metadata. The 

tune header should start with a X: and end with a K: 

field. The tune body follows the header and contains 

the music code. It consists of notes, bar lines, and 

other musical symbols. Chords are coded with [ ] 

symbols around the notes. All the notes within a chord 

mostly have same length, but if that’s not the case, the 

                                                             
1
    ABC File format http://abcnotation.com/wiki/abc:standard:v2.1 
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chord duration should be equal to that of the first note. 

Example – [CEGc] indicates the chord of C major.  

 

 
Figure 1: ABC notation
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1.2. Task Definition 

Given lyrics as the input, our task is to generate a 

suitable melody for it. We can formally define this task 

as below: 

The input is a sequence of words X = (x 1, x 2, …, x |X|) 

in the lyrics. The output is a sequence of musical notes 

Y = (y 1, y 2, …, y |Y|) for the lyrics.     

2. Related Work 

 

A variety of music composition works have been 

done over the last decades. Most of the traditional 

methods compose music based on music theory and 

expert domain knowledge. Chan, Potter, and Schubert 

(2006) design rules from music theory to use music 

clips to stitch them together in a reasonable way. With 

the development of machine learning and the increase 

of public music data, data-driven methods such as 

Markov chains model (Pachet and Roy 2011) and 

graphic model (Pachet, Papadopoulos, and Roy 2017) 

have been introduced to compose music. 

Recently, deep learning has revealed the potentials  

for musical creation. Most of the deep learning 

approaches use the recurrent neural network (RNN) to 

compose music by regarding it as a sequence. The 

MelodyRNN (Waite 2016) model, proposed by Google 

Brain Team, uses Look-back RNN and Attention RNN 

to capture the long-term dependency of a melody. Chu, 

Urtasun, and Fidler (2016) propose a hierarchical RNN 

based model which additionally incorporates 

knowledge from music theory into the representation, 

to compose not only the melody but also the drums 
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and chords. Some recent works have also started 

exploring various generative adversarial networks 

(GAN) models to compose music (Mogren 2016; Yang, 

Chou, and Yang 2017; Dong et al. 2017). 

3. Approach 

 

We conducted our experiments on two sequential 

models, which use LSTM and GRU. We found that 

LSTM is a better fit for our task. 

3.1. Overview of LSTMs 

LSTM network, which stands for Long Short-Term 

Memory, is a type of recurrent neural network. LSTMs 

help to preserve the error for a long time which can be 

backpropagated through time. They are capable of 

learning order dependence in sequence prediction 

problems and address the problem of vanishing and 

exploding gradients in RNN. In simple words, LSTM 

networks have some internal contextual state cells that 

act as long-term or short-term memory cells. 

The output of the LSTM network is modulated by 

the state of these cells. This is a very important 

property when we need the prediction of the neural 

network to depend on the historical context of inputs, 

rather than only on the very last input. With LSTMs, 

the information flows through a mechanism known as 

cell states. This way, LSTMs can selectively remember 

or forget things. The information at any cell state has 

three different dependencies. 

Figure 2:   A Long Short-Term Memory (LSTM) unit. The 

LSTM unit has four input weights (from the data to the input 

and three gates) and four recurrent weights (from the output to 

the input and the three gates).  

 

These dependencies can be generalized to any problem 

as: 
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1. The previous cell state (i.e. the information 

that was present in the memory after the 

previous time step). 

2. The previous hidden state (i.e. this is the 

same as the output of the previous cell). 

3. The input at the current time step (i.e. the 

new information that is  being fed in at that 

moment). 

 

A forget gate (as shown in Figure 2) is responsible 

for removing information from the cell state. The 

information that is no longer required for the LSTM to 

understand things or the information that is of less 

importance is removed via multiplication of a filter. This 

is required for optimizing the performance of the LSTM 

network. This gate takes in two inputs; h t-1 and x t: ht-1 

is the hidden state from the previous cell or the output 

of the previous cell and x t is the input at that time step. 

The input gate is responsible for the addition of 

information to the cell s tate. The job of selecting useful 

information from the current cell state and showing it 

out as an output is done via the output gate. 

3.2. Overview of GRU 

Gated recurrent units are a gating mechanism in 

recurrent neural networks. GRUs are similar to LSTMs. 

But there are some differences between LSTM and 

GRU which are worth noting - 

 

1. GRU is a long short-term memory with forget 

gate but no output gate (as shown in figure 3). 

GRU has an update and reset gate. Therefore, 

it has less parameters as compared to LSTM.  

2. GRUs don’t possess any internal memory that 

is different from the exposed hidden state. 

3. There is no second non-linearity applied when 

computing the output in GRU. LSTM, unlike 

GRU, has a sigmoid before the output gate. 

 

 
 

Figure 3: Illustration of (a) LST M and (b) Gated recurrent units. 

(a) i, f and o are the input, forget and output gates, 

respectively. c and c˜ denote the memory cell and the new 

memory cell content. (b) r and z are the reset and update gates, 

and h and h˜ are the activation and the candidate activation. 

 

GRU is more efficient than LSTM as it trains the 

model faster than LSTM and may need less data to 

generalize. Though the performance of GRU is 

comparable to LSTM, LSTM outperforms GRU in many 

situations. When long term memory is required, and 

enough data is available, LSTM can lead to better 

results at the expense of more computation cost.  

 

4. Experiments Tried/ Phases 

4.1. Dataset Collection 

Selecting the right music format was a challenge. 

Most of the early research in generating mus ic use 

MIDI files for their experiments. We obtained a dataset 

for midi-lyrics pair as we initially started working on 

midi files. This dataset consists of 50 songs. 

We eventually chose to work on the ABC file format 

since this format of music was easy for us to 

understand as it is a sequence of characters. We 

crawled 532 songs from the website www.lotro-

abc.com.  We then pre-processed the data to exclude 

the missing and invalid entries. Removing invalid 

entries from the dataset needed manual intervention. 

We then pre-processed the dataset more to remove the 

meta- information from the files like title (T:), when 

there is more than one tune in a file (X:).  We use a 

validation split of 0.20 and randomly shuffle the songs 

to obtain training and validation datasets. We work on 

425 songs for training and 107 songs for validation. We 

chose test lyrics of 10 songs to generate melodies for 

carrying out human evaluation. 

 

4.2. Implementation (Model Architecture) 

 

Phase 1: Using LSTM 

 

The implementation of this experiment was carried 

out using the model shown in Figure 4. It consists of 

two LSTM layers stacked one on top of the other. We 

added a layer of dropout (dropout = 0.3) after every 

LSTM layer. Because of multiple LSTM layers, more 

complex input patterns can be described at every layer 

allowing greater model complexity. Adding dropout 

http://www.lotro-abc.com/
http://www.lotro-abc.com/
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enables the network to learn multiple independent 

internal representations. The effect is that the network 

becomes less sensitive to the specific weights of 

neurons. This in turn results in a network that is 

capable of better generalization and is less likely to 

overfit the training data. 

A dense (linear) layer is added on top of these 

layers, with a SoftMax activation function. The output 

prediction at timestamp (t-1) is fed to the next cell of 

timestamp (t). 

The input to our model is the concatenated vector 

consisting of the text embedding (of the lyrics) and the 

melody embedding (of the musical notes). The output 

generated by the model is a continuous sequence of 

notes (melody) for the corresponding input lyrics. This 

output is in the format of an ABC notation which can 

be played using any online ABC-to-MP3 or ABC-to-

MIDI converter. 

  

 
Figure 4: Model architecture used in the prediction of musical 

notes 

 

Training: We use Adam as the optimizer with an 

initial learning rate of 0.001 and batch size of 1 to train 

our model, and the cross entropy as the loss function. 

The network was able to learn from the text and music 

sequence fed to it as input during training. 

In figure 5, we show that the loss curve of the best 

validation run using LSTM. We see that the loss drops 

quickly in the first few epochs and drops slowly in the 

later epochs. 

 
Figure 5: Loss curve (Loss per epoch) for training and 

validation dataset using LSTM.  

 

Phase 2: Using GRU 

 

We tried using GRU instead of LSTM. Given the 

lyrics and its corresponding melody as input, we find 

the text embedding of the lyrics and embedding of the 

melody. It encodes the lyrics and melody into two 

vectors which are fed as an input to the GRU. The text 

embedding of one word and music embedding of one 

note is passed as an input to the GRU at each time 

step. A dropout of 0.3 was added to this layer. This 

output was then fed into another GRU layer with a 

dropout of 0.2. A dense layer with Softmax activation 

was stacked on the top of these layers. The output of 

each time step was fed as an input to the next timestep. 

We observed that GRU degraded the performance of 

the network and none of the generated melodies 

sounded good to humans. 

  

4.3. Results 

Since we did not have any baseline model to 

compare our results with, we chose to get our results 

evaluated by humans. We took 10 song lyrics and 

generated melodies for these lyrics using our model. 

We then asked the humans to listen to the obtained 

melodies and categorize them into sad and happy 

tones. We made sure that the evaluators did not look at 

the corresponding lyrics or lyrics label during the 

study. Below is the summary of the obtained results:  
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For 8 songs the label category of the generated 

melodies matched the actual lyrics category i.e. if the 

tone of the lyrics was sad, the generated melody was 

also categorized as sad by the human evaluators. 

 

Here is the track we obtained for the lyrics of a song 

which has a happy emotion: 

https://soundcloud.com/damanpreet-kaur-9/coldplay-

scientist. Here is the track we obtained for the lyrics of 

a song which has a sad emotion: 

https://soundcloud.com/damanpreet-kaur-9/we-the-

king.  

The generated melodies do not sound like an original 

piece of music, but they were still able to capture the 

sentiment of the lyrics.  

 

5. Conclusion 

 

The contributions of our work in this report are 

summarized as follows: 

• To the best of our knowledge, our experiment is 

the first work to compose melody 

corresponding to input lyrics (considering the 

context of the input text). 

• We construct a lyrics-melody dataset 

consisting of 532 songs. 

• The human evaluation verifies that the 

synthesized musical notes of the generated 

melody are meaningful. 

 

6. Future work 

 

We are interested in trying out the encoder-decoder 

architecture. We believe that by using this architecture, 

our model will be more robust and will generate 

melodious tones. The sequence to sequence 

architectures have shown success in music generation. 

We would also like to incorporate attention mechanism 

where the model will use attention to look at all the 

encoder outputs at each step in the decoder. Using 

this, our model will be able to learn to attend to 

different parts at each step of the decoder. We also 

wish to work with a dataset which consists of melodies 

played on multiple instruments and produce more 

varied tunes. 
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