

1

Abstract

In this project, we aim to develop a model that

learns to compose music for natural language. The

model is provided with poetry lyrics as input and

generates a suitable melody for these lyrics as output.

The model consists of two LSTM layers followed by a

dense layer with a SoftMax activation function. The

model was trained on a pair of lyrics-melody of 532

songs which depicts mixed emotions. The dataset

comprises of sad and happy songs. The results of the

experiment show that the LSTM model was

successfully able to generate a melody which captures

the sentiment of the lyrics.

1. Introduction

For the experiments in this study, we chose a dataset

which comprises of multiple sentiments. The model

takes song lyrics as input and generates a melody for it

as a result. The main aim is that the model should learn

to capture the sentiments of the text and generate a

melody for it. We chose ABC music notation for music

as it is easy to understand compared to the other music

notations. In ABC notation, the music is just a

sequence of characters. We feed these characters in

sequence to our model at each time step along with the

words from the lyrics. Since our output is a multiclass

classification problem, so we use cross entropy as our

loss function. The model not only learns the patterns

of the musical notes from our training data but also

learns the emotion in the lyrics.

We collected 532 lyrics-melody pairs to carry out our

experiment. Though these songs capture multiple

sentiments, due to the lack of knowledge of music we

broadly classify the testing lyrics into sad and happy

moods and carried out human evaluation based on it.

The human evaluation results further show that the

generated tones were able to convey the sentiments of

the song. Though the generated melody was not

pleasing, it was still able to capture the emotions which

was the aim of our experiment.

Novelty: The factor of novelty in this project is the

emotion analyzing part where the model learns to

generate music according to the sentiment of the input

lyrics. Much research has been carried out to generate

novel music. But, to the best of our knowledge,

generating music for the input lyrics is an ongoing

research area and no solution has yet been established

to solve this problem.

1.1. Concepts from music theory

Melody can be regarded as an ordered sequence of

many musical notes. The basic unit of melody is the

musical note which mainly consists of two attributes:

pitch and duration. The pitch is a perceptual property

of sounds that allows their ordering on a frequency-

related scale; or in simple words, the pitch is the quality

that makes it possible to judge sounds as “higher” and

“lower” in the sense associated with musical melodies .

Duration is a time interval to describe the length of time

that the pitch or tone sounds, which is to judge how

long or short a musical note lasts.

An ABC file1 (shown in figure 1) in music consists of

a tune header and tune body, terminated by the end of

file tag. The tune header consists of metadata. The

tune header should start with a X: and end with a K:

field. The tune body follows the header and contains

the music code. It consists of notes, bar lines, and

other musical symbols. Chords are coded with []

symbols around the notes. All the notes within a chord

mostly have same length, but if that’s not the case, the

1
 ABC File format http://abcnotation.com/wiki/abc:standard:v2.1

Generating Melody for lyrics

Damanpreet Kaur

College of EECS, Oregon State University

1148 Kelley Engineering Center

Corvallis, OR 97330
kaurd@oregonstate.edu

Prachi Rahurkar

College of EECS, Oregon State University

1148 Kelley Engineering Center

Corvallis, OR 97330
rahurkap@oregonstate.edu

2

chord duration should be equal to that of the first note.

Example – [CEGc] indicates the chord of C major.

Figure 1: ABC notation

2

1.2. Task Definition

Given lyrics as the input, our task is to generate a

suitable melody for it. We can formally define this task

as below:

The input is a sequence of words X = (x 1, x 2, …, x |X|)

in the lyrics. The output is a sequence of musical notes

Y = (y 1, y 2, …, y |Y|) for the lyrics.

2. Related Work

A variety of music composition works have been

done over the last decades. Most of the traditional

methods compose music based on music theory and

expert domain knowledge. Chan, Potter, and Schubert

(2006) design rules from music theory to use music

clips to stitch them together in a reasonable way. With

the development of machine learning and the increase

of public music data, data-driven methods such as

Markov chains model (Pachet and Roy 2011) and

graphic model (Pachet, Papadopoulos, and Roy 2017)

have been introduced to compose music.

Recently, deep learning has revealed the potentials

for musical creation. Most of the deep learning

approaches use the recurrent neural network (RNN) to

compose music by regarding it as a sequence. The

MelodyRNN (Waite 2016) model, proposed by Google

Brain Team, uses Look-back RNN and Attention RNN

to capture the long-term dependency of a melody. Chu,

Urtasun, and Fidler (2016) propose a hierarchical RNN

based model which additionally incorporates

knowledge from music theory into the representation,

to compose not only the melody but also the drums

2
 https://en.wikipedia.org/wiki/ABC_notation

and chords. Some recent works have also started

exploring various generative adversarial networks

(GAN) models to compose music (Mogren 2016; Yang,

Chou, and Yang 2017; Dong et al. 2017).

3. Approach

We conducted our experiments on two sequential

models, which use LSTM and GRU. We found that

LSTM is a better fit for our task.

3.1. Overview of LSTMs

LSTM network, which stands for Long Short-Term

Memory, is a type of recurrent neural network. LSTMs

help to preserve the error for a long time which can be

backpropagated through time. They are capable of

learning order dependence in sequence prediction

problems and address the problem of vanishing and

exploding gradients in RNN. In simple words, LSTM

networks have some internal contextual state cells that

act as long-term or short-term memory cells.

The output of the LSTM network is modulated by

the state of these cells. This is a very important

property when we need the prediction of the neural

network to depend on the historical context of inputs,

rather than only on the very last input. With LSTMs,

the information flows through a mechanism known as

cell states. This way, LSTMs can selectively remember

or forget things. The information at any cell state has

three different dependencies.

Figure 2: A Long Short-Term Memory (LSTM) unit. The

LSTM unit has four input weights (from the data to the input

and three gates) and four recurrent weights (from the output to

the input and the three gates).

These dependencies can be generalized to any problem

as:

3

1. The previous cell state (i.e. the information

that was present in the memory after the

previous time step).

2. The previous hidden state (i.e. this is the

same as the output of the previous cell).

3. The input at the current time step (i.e. the

new information that is being fed in at that

moment).

A forget gate (as shown in Figure 2) is responsible

for removing information from the cell state. The

information that is no longer required for the LSTM to

understand things or the information that is of less

importance is removed via multiplication of a filter. This

is required for optimizing the performance of the LSTM

network. This gate takes in two inputs; h t-1 and x t: ht-1

is the hidden state from the previous cell or the output

of the previous cell and x t is the input at that time step.

The input gate is responsible for the addition of

information to the cell s tate. The job of selecting useful

information from the current cell state and showing it

out as an output is done via the output gate.

3.2. Overview of GRU

Gated recurrent units are a gating mechanism in

recurrent neural networks. GRUs are similar to LSTMs.

But there are some differences between LSTM and

GRU which are worth noting -

1. GRU is a long short-term memory with forget

gate but no output gate (as shown in figure 3).

GRU has an update and reset gate. Therefore,

it has less parameters as compared to LSTM.

2. GRUs don’t possess any internal memory that

is different from the exposed hidden state.

3. There is no second non-linearity applied when

computing the output in GRU. LSTM, unlike

GRU, has a sigmoid before the output gate.

Figure 3: Illustration of (a) LST M and (b) Gated recurrent units.

(a) i, f and o are the input, forget and output gates,

respectively. c and c˜ denote the memory cell and the new

memory cell content. (b) r and z are the reset and update gates,

and h and h˜ are the activation and the candidate activation.

GRU is more efficient than LSTM as it trains the

model faster than LSTM and may need less data to

generalize. Though the performance of GRU is

comparable to LSTM, LSTM outperforms GRU in many

situations. When long term memory is required, and

enough data is available, LSTM can lead to better

results at the expense of more computation cost.

4. Experiments Tried/ Phases

4.1. Dataset Collection

Selecting the right music format was a challenge.

Most of the early research in generating mus ic use

MIDI files for their experiments. We obtained a dataset

for midi-lyrics pair as we initially started working on

midi files. This dataset consists of 50 songs.

We eventually chose to work on the ABC file format

since this format of music was easy for us to

understand as it is a sequence of characters. We

crawled 532 songs from the website www.lotro-

abc.com. We then pre-processed the data to exclude

the missing and invalid entries. Removing invalid

entries from the dataset needed manual intervention.

We then pre-processed the dataset more to remove the

meta- information from the files like title (T:), when

there is more than one tune in a file (X:). We use a

validation split of 0.20 and randomly shuffle the songs

to obtain training and validation datasets. We work on

425 songs for training and 107 songs for validation. We

chose test lyrics of 10 songs to generate melodies for

carrying out human evaluation.

4.2. Implementation (Model Architecture)

Phase 1: Using LSTM

The implementation of this experiment was carried

out using the model shown in Figure 4. It consists of

two LSTM layers stacked one on top of the other. We

added a layer of dropout (dropout = 0.3) after every

LSTM layer. Because of multiple LSTM layers, more

complex input patterns can be described at every layer

allowing greater model complexity. Adding dropout

http://www.lotro-abc.com/
http://www.lotro-abc.com/

4

enables the network to learn multiple independent

internal representations. The effect is that the network

becomes less sensitive to the specific weights of

neurons. This in turn results in a network that is

capable of better generalization and is less likely to

overfit the training data.

A dense (linear) layer is added on top of these

layers, with a SoftMax activation function. The output

prediction at timestamp (t-1) is fed to the next cell of

timestamp (t).

The input to our model is the concatenated vector

consisting of the text embedding (of the lyrics) and the

melody embedding (of the musical notes). The output

generated by the model is a continuous sequence of

notes (melody) for the corresponding input lyrics. This

output is in the format of an ABC notation which can

be played using any online ABC-to-MP3 or ABC-to-

MIDI converter.

Figure 4: Model architecture used in the prediction of musical

notes

Training: We use Adam as the optimizer with an

initial learning rate of 0.001 and batch size of 1 to train

our model, and the cross entropy as the loss function.

The network was able to learn from the text and music

sequence fed to it as input during training.

In figure 5, we show that the loss curve of the best

validation run using LSTM. We see that the loss drops

quickly in the first few epochs and drops slowly in the

later epochs.

Figure 5: Loss curve (Loss per epoch) for training and

validation dataset using LSTM.

Phase 2: Using GRU

We tried using GRU instead of LSTM. Given the

lyrics and its corresponding melody as input, we find

the text embedding of the lyrics and embedding of the

melody. It encodes the lyrics and melody into two

vectors which are fed as an input to the GRU. The text

embedding of one word and music embedding of one

note is passed as an input to the GRU at each time

step. A dropout of 0.3 was added to this layer. This

output was then fed into another GRU layer with a

dropout of 0.2. A dense layer with Softmax activation

was stacked on the top of these layers. The output of

each time step was fed as an input to the next timestep.

We observed that GRU degraded the performance of

the network and none of the generated melodies

sounded good to humans.

4.3. Results

Since we did not have any baseline model to

compare our results with, we chose to get our results

evaluated by humans. We took 10 song lyrics and

generated melodies for these lyrics using our model.

We then asked the humans to listen to the obtained

melodies and categorize them into sad and happy

tones. We made sure that the evaluators did not look at

the corresponding lyrics or lyrics label during the

study. Below is the summary of the obtained results:

5

For 8 songs the label category of the generated

melodies matched the actual lyrics category i.e. if the

tone of the lyrics was sad, the generated melody was

also categorized as sad by the human evaluators.

Here is the track we obtained for the lyrics of a song

which has a happy emotion:

https://soundcloud.com/damanpreet-kaur-9/coldplay-

scientist. Here is the track we obtained for the lyrics of

a song which has a sad emotion:

https://soundcloud.com/damanpreet-kaur-9/we-the-

king.

The generated melodies do not sound like an original

piece of music, but they were still able to capture the

sentiment of the lyrics.

5. Conclusion

The contributions of our work in this report are

summarized as follows:

• To the best of our knowledge, our experiment is

the first work to compose melody

corresponding to input lyrics (considering the

context of the input text).

• We construct a lyrics-melody dataset

consisting of 532 songs.

• The human evaluation verifies that the

synthesized musical notes of the generated

melody are meaningful.

6. Future work

We are interested in trying out the encoder-decoder

architecture. We believe that by using this architecture,

our model will be more robust and will generate

melodious tones. The sequence to sequence

architectures have shown success in music generation.

We would also like to incorporate attention mechanism

where the model will use attention to look at all the

encoder outputs at each step in the decoder. Using

this, our model will be able to learn to attend to

different parts at each step of the decoder. We also

wish to work with a dataset which consists of melodies

played on multiple instruments and produce more

varied tunes.

7. References

[1] Yang, L.-C.; Chou, S.-Y.; and Yang, Y.-H. 2017. Midinet:

A convolutional generative adversarial network for

symbolic-domain music generation. arXiv preprint

arXiv:1703.10847.

[2] Roberts, A.; Engel, J.; Raffel, C.; Hawthorne, C.; and Eck,

D. 2018. A hierarchical latent vector model for learning

long-term structure in music. arXiv preprint

arXiv:1803.05428.

[3] Mogren, O. 2016. C-RNN-GAN: Continuous recurrent

neural networks with adversarial training. arXiv preprint

arXiv:1611.09904.

[4] Hasim Sak, Andrew Senior, Francoise Beaufays. Long

short-term memory based recurrent neural network

architectures for large vocabulary speech recognition.

arXiv preprint arXiv: 1402.1128.

[5] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,

Yoshua Bengio. Empirical Evaluation of Gated Recurrent

Neural Networks on Sequence Modeling. arXiv preprint

arXiv: 1412.3555.

[6] Chan, M.; Potter, J.; and Schubert, E. 2006. Improving

algorithmic music composition with machine learning. In

Proceedings of the 9th International Conference on Music

Perception and Cognition, ICMPC.

[7] Pachet, F., and Roy, P. 2011. Markov constraints:

steerable generation of markov sequences. Constraints

16(2):148–172.

[8] Waite, E. 2016. Generating long-term structure in songs

and stories. Magenta Bolg.

[9] Pachet, F.; Papadopoulos, A.; and Roy, P. 2017. Sampling

variations of sequences for structured music generation. In

Proceedings of the 18th International Society for Music

Information Retrieval Conference (ISMIR’2017), Suzhou,

China, 167–173.

[10] Dong, H.-W.; Hsiao, W.-Y.; Yang, L.-C.; and Yang, Y.-H.

2017. Musegan: Symbolic-domain music generation and

accompaniment with multi-track sequential generative

adversarial networks. arXiv preprint arXiv:1709.06298 .

[11] Chu, H.; Urtasun, R.; and Fidler, S. 2016. Song from pi: A

musically plausible network for pop music generation.

arXiv preprint arXiv:1611.03477.

https://soundcloud.com/damanpreet-kaur-9/coldplay-scientist
https://soundcloud.com/damanpreet-kaur-9/coldplay-scientist
https://soundcloud.com/damanpreet-kaur-9/we-the-king
https://soundcloud.com/damanpreet-kaur-9/we-the-king

