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Abstract 

 

Can an algorithm create original and compelling fashion 

designs to serve as an inspirational assistant? To help 

answer this question, we propose a novel use of SA-GAN on 

clothing design pattern datasets (floral and Indian 

geometric designs) to generate new appealing patterns. 

This approach builds on the work of Ian Goodfellow’s SA-

GANs. As per our qualitative analysis, about 69% of our 

images are thought to be created by human designers 

rather than by a computer while also being considered 

original, and our proposed approach scores high in both 

novelty and likability. The datasets and the code can be 

found on this GitHub link.        

 

1. Introduction 

Imagine that you could be your own fashion designer, 

and be able to seamlessly transform your current outfit into 

a completely new one, by simply changing the design 

patterns on the clothing. In just minutes you could design 

hundreds of different shirts, dresses, or even pants, allowing 

you to easily discover what your liking lies in. 

Artificial Intelligence (AI) research has been making 

huge progress in the machine’s capability of human level 

understanding across the spectrum of perception, reasoning 

and planning (He et al., 2017; Andreas et al., 2016; Silver 

et al., 2016). Another key yet still relatively understudied 

direction is creativity where the goal is for machines to 

generate original items with realistic, aesthetic and/or 

thoughtful attributes, usually in artistic contexts. We can 

indeed imagine AI to serve as inspiration for humans in the 

creative process and also to act as a sort of creative assistant 

able to help with more mundane tasks, especially in the 

digital domain. Previous work has explored writing pop 

songs (Briot et al., 2017), imitating the styles of great 

painters (Gatys et al., 2016; Dumoulin et al., 2017) or 

doodling sketches (Ha and Eck, 2018) for instance. 

However, it is not clear how creative such attempts can be 

considered since most of them mainly tend to mimic 

training samples without expressing much originality. 

Creativity is a subjective notion that is hard to define and 

evaluate, and even harder for an artificial system to 

optimize for. Colin Martindale put down a psychology-

based theory that explains human creativity in art 

(Martindale, 1990) by connecting creativity or acceptability 

of an art piece to novelty with “the principle of least effort”. 

As originality increases, people like the work more and 

more until it becomes too novel and too far from standards 

to be understood. 

Generative Adversarial Networks (Goodfellow et al., 

2014; Radford et al., 2016) show a great capability to 

generate realistic images from scratch without requiring 

any existing sample to start the generation from. They can 

be applied to generate artistic content, but their intrinsic 

creativity is limited because of their training process that 

encourages the generation of items close to the training data 

distribution; hence they show limited originality and overall 

creativity. Similar conservative behavior can be seen in 

recent deep learning models for music generation where the 

systems are also mostly trained to reproduce pattern from 

training samples, like Bach chorales (Hadjeres and Pachet, 

2017). Creative Adversarial Networks (CANs, Elgammal et 

al. (2017)) have then been proposed to adapt GANs to 

generate creative content (paintings) by encouraging the 

model to deviate from existing painting styles. Technically, 

CAN is a Deep Convolutional GAN (DCGAN) model 

(Radford et al., 2016) associated with an entropy loss that 

encourages novelty against known art styles. The specific 

application domain of CANs allows for very abstract 

generations to be acceptable but, as a result, does reward 

originality a lot without judging much how such enhanced 

creativity can be mixed with realism and standards. 

DCGAN [2], a GAN formulation combined with 

convolutional networks, has been shown to be an effective 

model to produce realistic images. Moreover, it allows for 

an end-to-end embedding of textual descriptions to 

condition the image generation. The task of generating 

design patterns for clothing, presents two significant 

challenges which are difficult to address with the standard 

DCGAN. First, it directly targets the pixel values and 

provides no mechanism to enforce structural coherence 

with respect to the input. Second, it tends to average out the 

pixels [3], thus resulting in various artifacts, e.g. blurry 

boundaries. 
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Figure 1: The Self-Attention mechanism 

2. Related Work 

Generative Adversarial Networks. GANs have 

achieved great success in various image generation tasks, 

including image-to-image translation [4, 5, 6, 7], image 

super-resolution [8, 9] and text-to-image synthesis [10, 11, 

12]. Despite this success, the training of GANs is known to 

be unstable and sensitive to the choices of hyper-

parameters. Several works have attempted to stabilize the 

GAN training dynamics and improve the sample diversity 

by designing new network architectures [13, 2, 12], 

modifying the learning objectives and dynamics [14, 15, 17, 

18, 16], adding regularization methods [19, 20] and 

introducing heuristic tricks [21, 3]. Recently, Miyato et al. 

[20] proposed limiting the spectral norm of the weight 

matrices in the discriminator in order to constrain the 

Lipschitz constant of the discriminator function. Combined 

with the projection-based discriminator [22], the spectrally 

normalized model greatly improves class-conditional 

image generation on ImageNet. 

Attention Models. Recently, attention mechanisms have 

become an integral part of models that must capture global 

dependencies [23, 24, 25, 26]. In particular, self-attention 

[27, 28], also called intra-attention, calculates the response 

at a position in a sequence by attending to all positions 

within the same sequence. Vaswani et al. [29] demonstrated 

that machine translation models could achieve state-of-the-

art results by solely using a self-attention model. Parmar et 

al. [30] proposed an Image Transformer model to add self-

attention into an autoregressive model for image 

generation. Wang et al. [31] formalized self-attention as a 

non-local operation to model the spatial-temporal 

dependencies in video sequences. In spite of this progress, 

self-attention has not yet been explored in the context of 

GANs. (AttnGAN [32] uses attention over word 

embeddings within an input sequence, but not self-attention 

over internal model states). SAGAN learns to efficiently 

find global, long-range dependencies within internal 

representations of images. 

 

 FashionGAN. Given an original wearer’s input photo 

and different textural descriptions, this model generates 

new outfits onto the wearer while preserving the pose and 

body shape of the wearer. The authors of this paper propose 

fashion synthesis with structural coherence. The complex 

generative process is decomposed into two conditional 

stages. In the first stage, a plausible semantic segmentation 

map that obeys the pose of the wearer as a latent spatial 

arrangement is generated. In the second stage, a generative 

model with a newly proposed compositional mapping layer 

is used to render the final image with precise regions and 

textures conditioned on this map. 

  

3. Self- Attention Generative Adversarial Networks 

Most GAN-based models [13, 2, 3] for image generation 

are built using convolutional layers. Convolution processes 

the information in a local neighborhood, thus using 

convolutional layers alone is computationally inefficient for 

modeling long-range dependencies in images. Introducing 

self-attention to the GAN framework enables both the 

generator and the discriminator to efficiently model 

relationships between widely separated spatial regions.  

 

The image features from the previous hidden layer are 

first transformed into two feature spaces to calculate the 

attention. Then the output of the attention layer is 

computed, as shown in Figure 1. The authors further 

multiply the output of the attention layer (oi) by a scale 
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Figure 2: Floral Design Patterns Dataset 

 

 

Figure 3: Indian Geometric Patterns Dataset 

 

parameter and add back the input feature map (xi). 

Therefore, the final output is given by yi = γ.oi + xi , where 

γ is initialized as 0. [1] 

This allows the network to first rely on the cues in the 

local neighborhood – since this is easier – and then 

gradually learn to assign more weight to the non-local 

evidence. The intuition for why this is done is 

straightforward: the easy task should be learnt first, and 

then progressively the complexity should be increased. In 

SA-GAN the proposed attention module has been applied 

to both generator and discriminator, which are trained in an 

alternating fashion by minimizing the hinge version of the 

adversarial loss [33, 20, 34]. 

 

4. Experiments   

We present two unique and interesting datasets (floral & 

geometric) and use them to generate new designs using SA-

GAN. 

 

4.1 Datasets 

   

Datasets for both Indian geometric patterns and floral 

design patterns were scraped from Shutterstock which is an 

image hosting site. The site has a rich collection for both 

geometric and floral images. We wrote a scraper in Python 

to extract images from Shutterstock for search queries of 

"Indian Geometric Patterns" & "Floral Design Patterns". 

Around 40000 images were scraped for each dataset, 

geometric and floral; but, the dataset was very noisy with 

images of different sizes and many images had text 

embedded in them. 

 

Cleaning the dataset was a challenge since there were 

nearly 80000 images in total, but fortunately, Shutterstock 

names the images with the topic that it corresponds to. eg 

abstract-background-tribal-ikat-multicolored-260nw-

247679563.jpg. Using these topics, we cleaned the data 

with a combination of both manual efforts and automated 

scripts. 
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Only images of the size 260 x 260 were used and the 

remaining images were filtered out by the above process. 

Some more manual filtering was required and eventually, 

the floral design pattern dataset (refer Figure 2) was created 

with about 2200 images; and the Indian geometric pattern 

dataset (refer Figure 3) was created with 3500 images; with 

both being publicly available on GitHub. 

 

4.2 Implementation 

 

 We train the SA-GAN model on the above two datasets: 

floral and geometric. The SAGAN model we trained were 

designed to generate 64 x 64 images. By default, spectral 

normalization [20] is used for the layers in both generator 

and discriminator. Similar to [22], SAGAN uses 

conditional batch normalization in the generator and 

projection in the discriminator. For all models, we use the 

Adam optimizer [35] with β1 = 0 and β2 = 0.9 for training. 

By default, the learning rate for the discriminator is 0.0004 

and the learning rate for the generator is 0.0001. Two layers 

of self-attention were used in both the generator and the 

discriminator.  

Due to lack of computational power and resources, our 

training stopped at the 361600th step, which took almost two 

days to train. SA-GAN has achieved state-of-the-art 

performance on the ImageNet dataset with 1 million steps. 

After obtaining the new generated designs by SA-GAN we 

overlaid it over different types of apparels. We 

implemented this using a separate Python script. 

 

5. Results 

After running the SA-GAN on the floral dataset for 

361600 steps, the result that we obtained is shown in Figure 

5.  The result of SA-GAN obtained on the geometric dataset 

after 115000 steps is shown in figure 4. The evaluation was 

focused on the floral dataset since the floral model was 

trained for many more steps. 

 

Rating Percent 

1 31 

2 14 

3 55 

Table 1: Qualitative Analysis 

 

Qualitative evaluation of the results obtained was 

performed using human feedback. Forty-eight people were 

asked to score the images between 1 - 3, where -  

1 - Does not resemble a flower, 

2 - Slightly resembles a flower, and, 

3 - Exactly resembles a flower. 

Additional evaluation of FID was also computed; however, 

due to the low number of training steps, the values were 

relatively low - with the floral dataset achieving 157 after 

the 361600th step, and, the geometric dataset achieving 240 

after the 115000th step. 

 

 
Figure 4: Generated geometric design patterns 

 

Figure 5: Generated floral design patterns 
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Figure 6: Applying the GAN-generated patterns on a sample 

blouse (above) and, on a sample dress (below) 

 

 

6. Contributions 

We present the following contributions through our 

project work: 

1. We formalize a new task: Generating intricate 

design patterns specially for apparel. 

2. We present two large-scale datasets – floral and 

geometric design patterns which are publicly made 

available. 

7. Conclusion and Future Work 

We still aim to obtain generated images of higher 

resolution. We also hope to increase the training data more, 

for much better results. We also wish to generate via GAN, 

a combined output of the shape of the apparel, along with 

the new design patterns on it. 
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